Equations of straight lines

Equations of straight lines

$y=m x+c$
$m=$ gradient $=\frac{\Delta y}{\Delta x}$
y intercept $=c$
the family of lines below are parallel since they have the same gradient ($\mathrm{m}=1$), however, different values for the y intercept (c)
(2) $y=x$
(1) $y=x+2$
(C) $y=x+5$
(C) $y=x-7$
(1) $y=x-3$

the family of lines below are parallel since they have the same gradient ($m=2$), however, different values for the y intercept (c)
(1) $y=2 x+2$
(1) $y=2 x+5$
(1) $y=2 x-7$
($y=2 x-3$

The family of lines below have the same y intercept (c=1), however, different values for the gradient (m)
(2) $y=x+1$
(1) $y=2 x+1$
(1) $y=\frac{1}{3} x+1$
(2) $y=3 x+1$
(1) $y=-2 x+1$
() $y=4 x+1$
(2) $y=-\frac{1}{2} x+1$

Perpendicular Lines

(2) $y=\frac{1}{5} x+1$
(v) $y=-3 x+1$
(1) $y=\frac{1}{3} x+2$

$y=-\frac{2}{5} x+1$
\sim
$y=\frac{5}{2} x+9$

$y=\frac{4}{7} x+1$

2 $y=-\frac{7}{4} x+5$

two lines L_{1} and L_{2} with gradients m_{1} and m_{2} are perpendicular if ; $m_{1} \times m_{2}=-1$

