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Candidates may use any calculator allowed by Pearson regulations.
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manipulation, differentiation and integration, or have retrievable
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Instructions
e Use black ink or ball-point pen.
e If pencil is used for diagrams / sketches / graphs it must be dark (HB or B).
o Answer all questions and ensure that your answers to parts of questions are clearly
labelled.
e Answer the questions in the spaces provided
— there may be more space than you need.
¢ You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
e Answers should be given to three significant figures unless otherwise stated.

Information
e A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
e There are 14 questions in this question paper. The total mark for this paper is 100.
e The marks for each question are shown in brackets
— use this as a guide as to how much time to spend on each question.

Advice
¢ Read each question carefully before you start to answer it.

o Try to answer every question.
e Check your answers if you have time at the end.
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Answer ALL questions. Write your answers in the spaces provided.

f(x) =3x> + 2ax* — 4x + 5a

Given that (x + 3) is a factor of f (x), find the value of the constant a.
3
(Total for Question 1 is 3 marks)
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Figure 1

Figure 1 shows a plot of part of the curve with equation y = cos x where x is measured in radians.
Diagram 1, on the opposite page, is a copy of Figure 1.

(a) Copy and use Diagram 1 to show why the equation
1
cosx—2x—— =0
2

has only one real root, giving a reason for your answer.
2)
Given that the root of the equation is a, and that a is small,

(b) use the small angle approximation for cos x to estimate the value of o to 3 decimal places.
3
(Total for Question 2 is S marks)
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_ 5x% +10x

x# -1
(x+1)°
(a) Show that &_ 4 where A4 and n are constants to be found.
dx  (x+1)"
C))
. dy

(b) Hence deduce the range of values for x for which . <0

)

(Total for Question 3 is S marks)

(a) Find the first three terms, in ascending powers of x, of the binomial expansion of

1
4—x

giving each coefficient in its simplest form.

(C))

The expansion can be used to find an approximation to \/5

Possible values of x that could be substituted into this expansion are:

1 1 A2

e x=-14because = =
V4-x \/E 6

e x =2 because

)

o x= —E because =—=

(b) Without evaluating your expansion,

(1) state, giving a reason, which of the three values of x should not be used
ey
(i1) state, giving a reason, which of the three values of x would lead to the most accurate
approximation to \/5
ey
(Total for Question 4 is 6 marks)
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(a)

()

(c)

f(x)=2x>+4x+9 xeR

Write f (x) in the form a(x + b)> + ¢, where a, b and c are integers to be found.

3

Sketch the curve with equation y = f (x) showing any points of intersection with the

coordinate axes and the coordinates of any turning point.
3

(1) Describe fully the transformation that maps the curve with equation y = f (x) onto

the curve with equation y = g (x) where
g(x)=2(x—-2)+4x-3 xe R
(i1) Find the range of the function
21
h(x)= ——— xelR
2x"+4x+9

“

(Total for Question 5 is 10 marks)

(a)

()

Solve, for —-180° < @ < 180°, the equation

5sin260=9tan 0

giving your answers, where necessary, to one decimal place.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(6
Deduce the smallest positive solution to the equation

5 sin (2x — 50°) =9 tan (x — 25°)
2)

(Total for Question 6 is 8 marks)
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In a simple model, the value, £V, of a car depends on its age, ¢, in years.
The following information is available for car 4

e its value when new is £20 000
e its value after one year is £16 000

(a) Use an exponential model to form, for car 4, a possible equation linking V" with .

The value of car 4 is monitored over a 10-year period.
Its value after 10 years is £2 000

(b) Evaluate the reliability of your model in light of this information.

The following information is available for car B

e it has the same value, when new, as car 4
e its value depreciates more slowly than that of car 4

(c¢) Explain how you would adapt the equation found in (@) so that it could be used to
model the value of car B.

(C))

2

0y

(Total for Question 7 is 7 marks)
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Figure 2

Figure 2 shows a sketch of part of the curve with equation y = x(x + 2)(x — 4).

The region R1 shown shaded in Figure 2 is bounded by the curve and the negative x-axis.

20
(a) Show that the exact area of R; is E

The region R> also shown shaded in Figure 2 is bounded by the curve, the positive x-axis
and the line with equation x = b, where b is a positive constant and 0 < b <4

Given that the area of R; is equal to the area of R>
(b) verify that b satisfies the equation
(b+2)* (3> —20h+20)=0

The roots of the equation 3b* — 205 + 20 = 0 are 1.225 and 5.442 to 3 decimal places.
The value of b is therefore 1.225 to 3 decimal places.

(c) Explain, with the aid of a diagram, the significance of the root 5.442

(C))

(C))

2

(Total for Question 8 is 10 marks)
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10.

11.

Given that @ > b > 0 and that a and b satisfy the equation
log a — log b =log(a — b)
(a) show that

(&)

(b) Write down the full restriction on the value of b, explaining the reason for this restriction.
2)
(Total for Question 9 is S marks)

(i) Prove that for all n € N, n? + 2 is not divisible by 4
“

(i) “Givenx € R, the value of |3x — 28| is greater than or equal to the value of (x — 9).”

State, giving a reason, if the above statement is always true, sometimes true or never true.
(2)
(Total for Question 10 is 6 marks)

A competitor is running a 20 kilometre race.

She runs each of the first 4 kilometres at a steady pace of 6 minutes per kilometre.
After the first 4 kilometres, she begins to slow down.

In order to estimate her finishing time, the time that she will take to complete each subsequent
kilometre is modelled to be 5% greater than the time that she took to complete the previous
kilometre.

Using the model,
(a) show that her time to run the first 6 kilometres is estimated to be 36 minutes 55 seconds,
2)
(b) show that her estimated time, in minutes, to run the rth kilometre, for 5 <» <20, is
6 x1.05*
1
(c) estimate the total time, in minutes and seconds, that she will take to complete the race.
“)

(Total for Question 11 is 7 marks)
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12. f(x)=10e ***sinx, x> 0

(a) Show that the x coordinates of the turning points of the curve with equation y = f (x)
satisfy the equation tan x = 4

(C))
b% A
/ N\ .,
@) ~— X
Figure 3
Figure 3 shows a sketch of part of the curve with equation y = f (x).
(b) Sketch the graph of H against ¢ where
H(f) = |10e *> sin ¢ | t>0
showing the long-term behaviour of this curve.
(0]
The function H(7) is used to model the height, in metres, of a ball above the ground ¢ seconds
after it has been kicked.
Using this model, find
(c) the maximum height of the ball above the ground between the first and second bounce.
3
(d) Explain why this model should not be used to predict the time of each bounce.
(0))

(Total for Question 12 is 10 marks)
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13. The curve C with equation

_ p—3x

__ p=¥x R, x#-3.x£2
Y =g x+3) re R, ¥ES,xF

: 1 .
where p and ¢ are constants, passes through the point L3, EJ and has two vertical asymptotes

with equations x = 2 and x = -3

(a) (1) Explain why you can deduce that g =4
(i) Show thatp =15

3)
V A
C
R
&>
0 3 x
Figure 4
Figure 4 shows a sketch of part of the curve C. The region R, shown shaded in Figure 4,
is bounded by the curve C, the x-axis and the line with equation x =3
(b) Show that the exact value of the area of R is @ In 2 + b In 3, where @ and b are rational
constants to be found.
®)

(Total for Question 13 is 11 marks)
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14. The curve C, in the standard Cartesian plane, is defined by the equation

x=4sin 2y %<y<%

The curve C passes through the origin O

(a) Find the value of % at the origin.

(2)
() (1) Use the small angle approximation for sin 2y to find an equation linking x and y
for points close to the origin.
(i1) Explain the relationship between the answers to (a) and (b)(1).
2)
(¢) Show that, for all points (x, y) lying on C,
y__ 1
dx  gp—x?
where a and b are constants to be found.
3

(Total for Question 14 is 7 marks)

TOTAL FOR PAPER IS 100 MARKS
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