GCSE Mathematics (1MA1) - Higher Tier Paper 1H

November 2022 student-friendly mark scheme

Please note that this mark scheme is not the one used by examiners for making scripts. It is intended more as a guide to good practice, indicating where marks are given for correct answers. As such, it doesn't show follow-through marks (marks that are awarded despite errors being made) or special cases.

It should also be noted that for many questions, there may be alternative methods of finding correct solutions that are not shown here - they will be covered in the formal mark scheme.

NOTES ON MARKING PRINCIPLES

Guidance on the use of codes within this mark scheme

M1 - method mark. This mark is generally given for an appropriate method in the context of the question. This mark is given for showing your working and may be awarded even if working is incorrect.

P1 - process mark. This mark is generally given for setting up an appropriate process to find a solution in the context of the question.

A1 - accuracy mark. This mark is generally given for a correct answer following correct working.

B1 - working mark. This mark is usually given when working and the answer cannot easily be separated.

C1 - communication mark. This mark is given for explaining your answer or giving a conclusion in context supported by your working.

Some questions require all working to be shown; in such questions, no marks will be given for an answer with no working (even if it is a correct answer).

Question 1 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
For example: $250 \times 2 \rightarrow 125 \times 2 \rightarrow 25 \times 5 \rightarrow 5 \times 5$	M1	This mark is given for a complete method to find the prime factors (could be shown on a factor tree)	
	$2 \times 2 \times 5 \times 5 \times 5$	M1	This mark is given for a method to find a complete factorisation
	$2^{2} \times 5^{3}$	A1	This mark is given for the correct answer only

Question 2 (Total 4 marks)

$\begin{array}{|c|l|l|l|}\hline \text { Part } & \begin{array}{l}\text { Working an or answer examiner might } \\ \text { expect to see }\end{array} & \text { Mark } & \text { Notes } \\ \hline \text { (a) } & \frac{8}{5}+\frac{9}{4}=\frac{(4 \times 8)+(5 \times 9)}{20}=\frac{32+45}{20} & \text { M1 } & \begin{array}{l}\text { This mark is given for a method to find a } \\ \text { suitable common denominator }\end{array} \\$\cline { 2 - 4 } \& $\left.\frac{87}{20}=3 \frac{17}{20} & \text { M1 } & \begin{array}{l}\text { This mark is given for the correct answer } \\ \text { only }\end{array} \\ \hline \text { (b) } & 2 \frac{2}{3}=\frac{8}{3} & \text { A1 } & \begin{array}{l}\text { This mark is given for find } 2 \frac{2}{3} \\ \text { improper fraction an }\end{array} \\ \text { fraction which equates to } \frac{4}{9}\end{array}\right]$

Question 3 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$2^{-5+8}=2^{3}$ $\left(2^{3}\right)^{2}=$	M1	This mark is given for a method to simplify the powers
	2^{6}	A1	This mark is given for the correct answer only

Question 4 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
For example: $4 \times 32=128$	M1	This mark is given for the digits 128 seen	
	0.00128	A1	This mark is given for the correct answer only

Question 5 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{15}{80} \times 40000$	M1	This mark is given for a method to find the expected number of model B
	7500	A1	This mark is given for the correct answer only

Question 6 (Total 6 marks)

Part	Working or answer an examiner might expect to see		Mark	Notes
(a)(i)	$\begin{array}{ll} a: b=2: 6 & \text { or } \\ b: c=6: 5 & \text { or } \end{array}$	$\begin{aligned} & a: b=1: 3 \\ & b: c=3: 2.5 \end{aligned}$	P1	This mark is given for a process to compare ratios
	2:6:5		A1	This mark is given for a correct answer only
(a)(ii)	$\frac{2}{2+6+5}$		P1	This mark is given for a process to find a as a fraction
	$\frac{2}{13}$		A1	This mark is given for a correct answer only
(b)	$\begin{aligned} & n=2 m \\ & p=5 \times 2 m=10 m \end{aligned}$		P1	This mark is given for a process to express all numbers in terms of one number
	1:10		A1	This mark is given for a correct answer only

Question 7 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{10000}{2 \times 4}$	P1	This mark is given for a process to use the area of the base in the formula
	1250	A1	This mark is given for the correct answer only

Question 8 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
$5 \times 7,7 \times 2$	M1	This mark is given for a method to find possible values for m and n	
	For example: $m=35$ and $n=14$	A1	This mark is given for a correct pair of values found

Question 9 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$-4,-5,0,5$	B2	These marks are given for all values correct (B1 is given for 2 or 3 values correct)
(b)			B2

Question 10 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\frac{10}{6+8+9+7+10} \times \frac{10}{6+8+9+7+10}$ $=\frac{10}{40} \times \frac{10}{40}=\frac{100}{1600}$	M1	This mark is given for a method to find the probability of a score of 5 both times
	$\frac{1}{16}$	A1	This mark is given for the correct answer only
(b)	$\frac{6}{40} \times 100$	M1	This mark is given for a method to find the percentage of times a score of 1 is expected
	15	A1	This mark is given for the correct answer only

Question 11 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Enlargement Scale factor $\frac{1}{3}$ Centre $(0,2)$	B2	These marks are given for all three aspects of the transformation stated (B1 is given for two aspects stated)

Question 12 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
For example: $15 x+6 y=33$ $8 x+6 y=12$	M1	This mark is given for a method to eliminate y	
	A1	This mark is given for finding the correct value for x	
	M1	This mark is given for a method to find the value of y	
	$y=-2$	A1	This mark is given for finding the correct value for x

Question 13 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$p \propto \frac{1}{t}$ or $p=\frac{k}{t}$	M1	This mark is given for a method to find a value for the constant k
	$1=\frac{k}{100}$ so $k=100$	A1	This mark is given for a method to find the missing value of t
	$5=\frac{100}{t}, t=20$	A1	This mark is given for a method to find the missing values of p
	$p=\frac{100}{25}=4, p=\frac{100}{2}=50$		

Question 14 (Total 3 marks)

Question 15 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
$2 \times \pi \times 18$ $\frac{4 \pi}{360}$ P1 This mark is given for a process to use equal proportions $x=\frac{4 \pi}{36 \pi} \times 360$ P1 This mark is given for a process to find the value of x 40 A1 This mark is given for the correct answer only l			

Question 16 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$(2 m+1)^{2}=\left(4 m^{2}+4 m+1\right)$ $(2 n-1)^{2}=\left(4 n^{2}-4 n+1\right)$	M1	This mark is given for a method to expand $(2 m+1)^{2}$ or $(2 n-1)^{2}$
	$\left(4 m^{2}+4 m+1\right)-\left(4 n^{2}-4 n+1\right)$ $=4 m^{2}+4 m+1-4 n^{2}+4 n-1$ $=4 m^{2}+4 m-4 n^{2}+4 n$	M1	This mark is given for a method to find an expression with both expansions correct
$=4\left(m^{2}+m-n^{2}+n\right)$ $=4(m+n)(m-n+1)$	C1	This mark is given for a full proof with no errors	
(b)	Yes, Sophia is correct. $2 m+1$ and $2 n-1$ are both odd numbers and the right-hand side of the equation is a multiple of 4	C1	This mark is given for a correct reason supported by a valid explanation

Question 17 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\left(\frac{8}{27}\right)^{\frac{1}{3}}=\left(\frac{2}{3}\right)$ or $\left(\frac{8}{27}\right)^{4}=\left(\frac{4096}{531441}\right)$	M1	This mark is given for a method to find the cube root or find a power of 4
$\left(\frac{2}{3}\right)^{4}=\quad$ or $\left(\frac{4096}{531441}\right)^{\frac{1}{3}}=$	A1	This mark is given for the correct answer only	
	$\frac{16}{81}$		

Question 18 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
$O B A=\frac{180-x}{2}$ angles in a triangle add up to 180 base angles of an isosceles triangle are equal	M1	This mark is given for a method to find the angle $O B A$	
	$A B C=90-\frac{180-x}{2}=\frac{180}{2}-\frac{180-x}{2}$ $=\frac{180}{2}-\frac{180}{2}+\frac{x}{2}=\frac{x}{2}$ (or $\left.\frac{1}{2} x\right)$ the tangent to a circle is perpendicular to the radius	M1	This mark is given for a method to find the angle $A B C$
	C1	This mark is given for correct reasons given for each stage of working	

Question 19 (Total 5 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
	$\frac{(x+1)-x}{x(x+1)}=4 \quad \text { so } \quad \frac{1}{x(x+1)}=4$	P1	This mark is given for a process to find a common denominator
	$\begin{aligned} & 1=4 x(x+1) \\ & 1=4 x^{2}+4 x \\ & 4 x^{2}+4 x-1 \end{aligned}$	P1	This mark is given for rearranging to express the equation as a quadratic to be solved
	$\frac{-4 \pm \sqrt{4^{2}-4 \times 4 \times-1}}{2 \times 4}$ or $\left(x+\frac{1}{2}\right)^{2}-\frac{1}{2}=0$	P1	This mark is given for a process to substitute into the quadratic formula or to complete the square
	$\frac{-4 \pm \sqrt{32}}{8}$ or $\pm \sqrt{\frac{1}{2}}-\frac{1}{2}$	A1	This mark is given for finding solutions for the values of x
	$-\frac{1}{2}+\frac{1}{2} \sqrt{ } 2, \quad-\frac{1}{2}-\frac{1}{2} \sqrt{ } 2$	A1	This mark is given for answers in the form $a \pm b \sqrt{ } 2$ as required

Question 20 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{3}{11} \times \frac{7}{10}$ or $\frac{3}{11} \times \frac{1}{10}$ or $\frac{7}{11} \times \frac{3}{10}$ or $\frac{7}{11} \times \frac{1}{10}$ or	P1	lhis mark is given for a start to the process to find a probability of two cards of different colours
	$\frac{1}{11} \times \frac{3}{10}$ or $\frac{1}{11} \times \frac{7}{10}$	P1	This mark is given for a complete process to find a probability of two cards of different colours
	$\frac{3}{110}+\frac{21}{210}+\frac{7}{210}+\frac{3}{210}+\frac{7}{210}$	A1	This mark is given for a correct answer only (accept equivalent fractions, decimals)

Question 21 (Total 2 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
	$(180,-1)$	B1	This mark is given for 180
		B1	This mark is given for -1

Question 22 (Total 4 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
$\sin 30^{\circ}=0.5$ P1 $\frac{6.5}{\sin A B C}=\frac{10.7}{\sin 30}$This mark is given for recognising the sine of 30° is 0.5			
	P1	This mark is given for the use of the sine rule	

Question 23 (Total 5 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
(a)	For example: $10 \div \sqrt{ } 5=2 \sqrt{ } 5,20 \sqrt{ } 5 \div 10=2 \sqrt{ } 5$, $200 \div 20 \sqrt{ } 5=2 \sqrt{ } 5,400 \sqrt{ } 5 \div 200=2 \sqrt{ } 5$	P1	This mark is given for a process to identify the common ratio
	$400 \sqrt{ } 5 \times 2 \sqrt{ } 5=4000$	A1	This mark is given for the correct answer only
(b)	$\frac{5 \sqrt{ } 2}{8} \div \frac{5 \sqrt{ } 2}{4}=\frac{1}{2}$	P1	This mark is given for a process to find the ratio of the 4th and 6th terms
$\frac{5 \sqrt{ } 2}{4} \div\left(\frac{1}{\sqrt{2}}\right)^{3}=\frac{5 \sqrt{ } 2}{4} \times 2 \sqrt{ } 2=\frac{10 \times 2}{4}$	P1	This mark is given for a process to find the first term	
	5	A1	This mark is given for the correct answer only

Question 24 (Total 6 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
(a)	$\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi r^{2} h \quad \text { so } 4 r=h$	P1	This mark is given for a process to equate the two volumes
	1:4	P1	This mark is given for the correct answer only
(b)	$4 \pi r^{2}=\pi r^{2}+\pi r l$	P1	This mark is given for a process to equate the two surface areas
	$4 \pi r^{2}=\pi r^{2}+\pi r \sqrt{h^{2}+r^{2}}$	P1	The mark is given for a process to substitute $l=\sqrt{h^{2}+r^{2}}$
	$\begin{aligned} 3 \pi r^{2} & =\pi r \sqrt{h^{2}+r^{2}} \\ 3 r & =\sqrt{h^{2}+r^{2}} \\ 9 r^{2} & =h^{2}+r^{2} \\ 8 r^{2} & =h^{2} \end{aligned}$	P1	This mark is given for a process to find an equation in terms of r^{2}
	$1: \sqrt{ } 8$	A1	This mark is given for the correct answer only

