GCSE Mathematics (1MA1) – Higher Tier Paper 1H

November 2021 student-friendly mark scheme

Please note that this mark scheme is not the one used by examiners for marking scripts. It is intended more as a guide to good practice, indicating where marks are given for correct answers. As such, it doesn't show follow-through marks (marks that are awarded despite errors being made) or special cases.

It should also be noted that for many questions, there may be alternative methods of finding correct solutions that are not shown here – they will be covered in the formal mark scheme.

NOTES ON MARKING PRINCIPLES

Guidance on the use of codes within this mark scheme

M1 – method mark. This mark is generally given for an appropriate method in the context of the question. This mark is given for showing your working and may be awarded even if working is incorrect.

P1 – process mark. This mark is generally given for setting up an appropriate process to find a solution in the context of the question.

A1 – accuracy mark. This mark is generally given for a correct answer following correct working.

B1 – working mark. This mark is usually given when working and the answer cannot easily be separated.

C1 – communication mark. This mark is given for explaining your answer or giving a conclusion in context supported by your working.

Some questions require all working to be shown; in such questions, no marks will be given for an answer with no working (even if it is a correct answer).

Question 1 (Total 6 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
(a)	3.67 4.2 ×	M1	This mark is given for a method to find a solution
	15.414	A1	This mark is given for 15414 seen
		A1	This mark is given for the correct answer only
(b)	For example 5984 ÷ 16	M1	This mark is given for a method to simplify to find a solution
	$ \begin{array}{r} 374 \\ 16 \overline{\smash{\big)}5984} \end{array} $	A1	This mark is given for 374 seen
	37.4	A1	This mark is given for the correct answer only

Question 2 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	This mark is given for 6 and 18 correctly placed
		M1	This mark is given for 2 and 14 correctly placed
	4 8 10 16	C1	This mark is given for a fully correct Venn diagram

Question 3 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{21}{5} - \frac{8}{3}$	M1	This mark is given for a method to find mixed numbers as improper fractions
	$=\frac{63}{15}-\frac{40}{15}=\frac{23}{15}$	M1	This mark is given for a method to find fractions with a common denominator
	$=1\frac{8}{15}$	A1	This mark is given for a correct answer only

Question 4 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$220\ 000 \times 0.2 = 44\ 000$	P1	This mark is given for a process to find the amount of decrease in the value of Tamara's house
	Tamara's house at the end of 2019: 220 000 - 44 000 = 176 000	P1	This mark is given for a process to find the value of Tamara's house at the end of 2019
	Rahim's house at the end of 2019: 160 000 × 1.3 = 208 000	A1	This mark is given for a process to find the value of Rahim's house at the end of 2019
	208 000 > 176 000 Rahim's house had the greater value	C1	This mark is given for a correct conclusion

Question 5 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	4:7:15 15-7=8	P1	This mark is given for a process to find how many more stickers Ibrahim has using the ratio given in the question
	24 ÷ 8 = 3 Rosie, Matilda and Ibrahim have stickers in ratio 12 : 21 : 45	P1	This mark is given for process to find the number of stickers each person has
	Ibrahim has 45 – 12 more stickers than Rosie = 33	A1	This mark is given for the correct answer only

Question 6 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{1}{2}(5 \times h) \times 25 = 750$	P1	This mark is given for a process to find an equation in h for the volume of the prism
	$h = \frac{750}{62.5}$	P1	This mark is given for a process to find an equation for the height of the prism
	<i>h</i> = 12	A1	This mark is given for a correct answer only

Question 7 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Surface area of cube = $6x^2$	M1	This mark is given for a method to find an expression for the surface area of the cube
	Surface area of sphere = $4\pi \times 3^2 = 36\pi$	M1	This mark is given for a method to find an expression for the surface area of the sphere
	$6x^2 = 36\pi$ $x^2 = 6\pi$	M1	This mark is given for a method to equate expressions for the surface areas
	$x = \sqrt{k\pi}$ where $k = 6$	A1	This mark is given for showing that $x = \sqrt{k\pi}$

Question 8 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$x^2 - 5x - 24 = 0$	M1	This mark is given for a method to rearrange to find a quadratic equation equal to zero
	(x+3)(x-8) = 0	M1	This mark is given for a method to factorise the equation
	x = -3, x = 8	A1	This mark is given for the correct answer only

Question 9 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	1	B1	This mark is given for the correct answer only
(b)	3	B1	This mark is given for the correct answer only
(c)	$\frac{1}{16}$	B1	This mark is given for the correct answer only (or equivalent)
(d)	3	B1	This mark is given for the correct answer only

Question 10 (Total 4 marks)


Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	Area of one of the squares = $\frac{5406}{6}$ cm ²	P1	This mark is given for a process to find the area of one square
	901 cm ²	P1	This mark is given for a process to find the area of one square
	$\sqrt{901} \approx 30$ Side of square is 30 cm	A1	This mark is given finding the length of the side of one square (to the nearest whole number)
(b)	Underestimate; $30^2 = 900$ so $\sqrt{901} > 30$	C1	This mark is given for a correct reason

Question 11 (Total 6 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	6(2w + y) = 7w(3y + 6)	P1	This mark is given for a process to find an expression equating the area of \mathbf{A} with the area of \mathbf{B}
	12w + 6y = 21wy + 42w $6y - 21wy = 30w$	P1	This mark is given for rearranging to find an equation in three terms
	y(6-21w) = 30w	P1	This mark is given for a process to factorise $6y - 21wy$
	$y = \frac{30w}{6 - 21w}$	A1	This mark is given for the correct answer only (or equivalent expression)

Solutions to this question may be seen where all expressions are divided through by 3

Question 12 (Total 6 marks)

Question 13 (Total 1 mark)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Ted cannot calculate $4.\dot{3}\dot{4} - 0.\dot{4}\dot{3}$. He needs to find $100x = 43.\dot{4}\dot{3}$ so that he can use $100x - x$ = $43.\dot{4}\dot{3} - \dot{4}\dot{3}$	C1	This mark is given for a correct evaluation

Question 14 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	A = (x + 11)(2x + 6) - 4(x + 5)	M1	This mark is given for a process to find area of a rectangle with sides with length $x + 11$ and $2x + 6$
		M1	This mark is given for a process to subtract the area of a rectangle with sides with length (2x + 6) - (x + 1) = (x + 5) and 4
	$A = 2x^{2} + 22x + 6x + 66 - 4x - 20$ $= 2x^{2} + 24x + 46$	A1	This mark is given for a completely correct solution

Question 15 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{5(4x+3)+6x}{10x}$	M1	This mark is given for a method to find a correct numerator
		M1	This mark is given for a method to find a correct denominator
	$\frac{20x+15+6x}{10x} = \frac{26x+15}{10x}$	A1	This mark is given for collecting terms to find an answer in the form $\frac{ax+b}{cx}$

Question 16 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Probability of red, yellow, yellow = $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6} = \frac{60}{336}$	P1	This mark is given for a process to find the probability of taking one red counter then two yellow counters
	Probability of yellow, red, yellow = $\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} = \frac{60}{336}$	P1	This mark is given for a process to find the probability of taking one red counter one yellow counter then one red counter
	Probability of yellow, yellow, red = $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{60}{336}$	P1	This mark is given for a process to find the probability of taking two yellow counters then one red counter
	$3 \times \frac{60}{336} = \frac{180}{336}$	A1	This mark is given for a correct answer only

Question 17 (Total 3 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
		M1	This mark is given for two of the three lines $2y + 4 = x$, $x = 3$ and $y = 6 - 3x$ correctly drawn
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	This mark is given for all three lines $2y + 4 = x$, $x = 3$ and $y = 6 - 3x$ correctly drawn
		A1	This mark is given for a fully correct region with all lines correct

Question 18 (Total 5 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{1}{2}h(a+b) = 66$	P1	This mark is given for a process to find an equation for the area of the trapezium
	where $a = \text{length } AB$ and $b = \text{length } DC$		
	$h = 6 \sin 30^\circ = 6 \times 0.5 = 3$	P1	This mark is given for a process to find the height of the trapezium
	$\frac{3}{2}(a+b) = 66$ $a+b = 44$	P1	This mark is given for a process to find a value for $a + b$
	$a = \frac{2}{5} \times 44$	P1	This mark is given for a process to find the length of <i>AB</i>
	17.6	A1	This mark is given for a correct answer only

Question 19 (Total 5 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
	$\frac{8+\sqrt{12}}{5+\sqrt{3}} = \frac{8+2\sqrt{3}}{5+\sqrt{3}}$	M1	This mark is given for a process to write $\sqrt{12}$ as $2\sqrt{3}$ in the fraction
	$\frac{\frac{8+2\sqrt{3}}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}}}{\frac{40+10\sqrt{3}-8\sqrt{3}-6}{25-3}}$	M1	This mark is given for a process to multiply numerator and denominator by $5 - \sqrt{3}$
	$=\frac{34+2\sqrt{3}}{22}$	M1	This mark is given for a process to collect terms
	$=\frac{17+\sqrt{3}}{11}$	A1	This mark is given for the correct answer in the form $\frac{a+\sqrt{3}}{b}$

Question 20 (Total 3 marks)

Part	Working or answer an examiner might	Mark	Notes
	expect to see		
		M1	This mark is given for drawing the line $y - 2x = 1$ on the diagram
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	This mark is given for reading the points $x = 2.1$, $y = 5.1$ from the diagram (Accept answers in the range 2.0 to 2.2 and 5.0 to 5.2)
		A1	This mark is given for reading the points $x = -2.9$, $y = -4.7$ from the diagram (Accept answers in the range -2.8 to -3.0 and -4.6 to -4.8)

Question 21 (Total 6 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
(a)	f(1) = 4	M1	This mark is given for a method to find the value of $f(1)$
	$gf(1) = g(4) = \frac{4}{16} = \frac{1}{4}$	A1	This mark is given for a correct answer only
(b)	$fg(x) = 3\left(\frac{4}{x^2}\right)^2 + 1$	M1	This mark is given for a method to find $fg(x)$
	$fg(x) = \frac{48}{x^4} + 1$	M1	This mark is given for a method to find the composite function fg
	$h(x) = \sqrt[4]{\frac{48}{x-1}}$	M1	This mark is given for a method to find $h(x)$
		A1	This mark is given for the correct answer only

Question 22 (Total 4 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
	$9 + 18x - 3x^2 = -3(x^2 - 6x - 3)$	P1	This mark is given for process to factorise the equation
	$(x-3)^2-9$	P1	This mark is given for the start of a process to complete the square
	$-3(x-3)^2+36$	P1	This mark is given for a full process to complete the square
	(3, 36)	A1	This mark is given for the correct answer only