
 
 

Candidates may use any calculator allowed by the regulations of the 
Joint Council for Qualifications. Calculators must not have the facility 
for symbolic algebra manipulation, differentiation and integration, or 
have retrievable mathematical formulae stored in them. 

 
Instructions  

•  Use black ink or ball-point pen.  
•  If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).  
•  Fill in the boxes at the top of this page with your name, centre number and candidate 

number.  
•  Answer all questions and ensure that your answers to parts of questions are clearly 

labelled.  
•  You should show sufficient working to make your methods clear. Answers without working 

may not gain full credit.  
•  Answers should be given to three significant figures unless otherwise stated. 
 
Information  

•  A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.  
•  There are 14 questions. The total mark for this part of the examination is 100. 
•  The marks for each question are shown in brackets 
  – use this as a guide as to how much time to spend on each question. 
 
Advice 

•  Read each question carefully before you start to answer it.  
•  Try to answer every question.  
•  Check your answers if you have time at the end. 
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Answer ALL questions. 

 

1.  Given that θ is small and is measured in radians, use the small angle approximations to find 

an approximate value of 





3sin2

4cos1
. 

(3) 

___________________________________________________________________________ 

 

2.  A curve C has equation 

y = x
2
 − 2x − 24x,    x > 0.  

 

(a) Find (i) 
x

y

d

d
, 

 

  (ii) 
2

2

d

d

x

y
.  

(3) 

 

(b)  Verify that C has a stationary point when x = 4. 

(2) 

 

(c)  Determine the nature of this stationary point, giving a reason for your answer. 

(2) 

___________________________________________________________________________ 

 

3. 

 
 

Figure 1 

 

Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is 

θ radians. The area of the sector AOB is 11 cm
2
. 

 

Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value 

of r. 

(4) 

___________________________________________________________________________ 
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4.  The curve with equation y = 2 ln(8 − x) meets the line y = x at a single point, x = α. 

 

(a) Show that 3 < α < 4. 

(2) 

 

 
 

Figure 2 

 

Figure 2 shows the graph of y = 2 ln(8 − x) and the graph of y = x. 

 

A student uses the iteration formula 

 

xn + 1 = 2 ln(8 − xn),    n ∈  ℕ, 

 

in an attempt to find an approximation for α. 

 

Using the graph and starting with x1 = 4, 

 

(b) determine whether or not this iteration formula can be used to find an approximation 

for α, justifying your answer. 

(2) 

___________________________________________________________________________ 

 

5.  Given that 

 





cos2sin2

sin3


,       –

4


 <   < 

4

3
, 

 

show that 

 

d

dy
 = 

2sin1

A
,       –

4


 <   < 

4

3
, 

 

where A is a rational constant to be found. 

(5) 

___________________________________________________________________________ 
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6. 

 
Figure 3 

 

The circle C has centre A with coordinates (7, 5). 

 

The line l, with equation y = 2x + 1, is the tangent to C at the point P, as shown in Figure 3. 

 

(a)  Show that an equation of the line PA is 2y + x = 17. 

(3) 

 

(b)  Find an equation for C. 

(4) 

The line with equation y = 2x + k, k ≠ 1, is also a tangent to C. 

 

(c)  Find the value of the constant k. 

(3) 

___________________________________________________________________________ 

 

7.  Given that k  ℤ+
, 

 

(a)  show that  x
kx

k

k

d
)3(

2
3







 is independent of k, 

(4) 

 

(b)  show that x
kx

k

k

d
)2(

2
2

2





  is inversely proportional to k. 

(3) 

___________________________________________________________________________ 
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8.  The depth of water, D metres, in a harbour on a particular day is modelled by the formula  

 

D = 5 + 2 sin (30t)°,     0  t < 24, 

 

where t is the number of hours after midnight. 

 

A boat enters the harbour at 6:30 a.m. and it takes 2 hours to load its cargo. The boat requires 

the depth of water to be at least 3.8 metres before it can leave the harbour. 

 

(a)  Find the depth of the water in the harbour when the boat enters the harbour. 

(1) 

 

(b)  Find, to the nearest minute, the earliest time the boat can leave the harbour. 

 

 (Solutions based entirely on graphical or numerical methods are not acceptable.) 

(4) 

___________________________________________________________________________ 
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9. 

 
Figure 4 

 

Figure 4 shows a sketch of the curve with equation x
2
 − 2xy + 3y

2
 = 50. 

 

(a) Show that 
x

y

d

d
 = 

xy

xy





3
. 

(4) 

 

The curve is used to model the shape of a cycle track with both x and y measured in km. 

 

The points P and Q represent points that are furthest west and furthest east of the origin O, as 

shown in Figure 4. 

 

Using part (a), 

 

(b)  find the exact coordinates of the point P. 

(5) 

 

(c)  Explain briefly how to find the coordinates of the point that is furthest north of the 

origin O. (You do not need to carry out this calculation). 

(1) 

___________________________________________________________________________ 
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10.  The height above ground, H metres, of a passenger on a roller coaster can be modelled by the 

differential equation 

t

H

d

d
 = 

40

)25.0cos( tH
, 

 

where t is the time, in seconds, from the start of the ride. 

 

Given that the passenger is 5 m above the ground at the start of the ride, 

 

(a)  show that H = 5e
0.1 sin (0.25t)

. 

(5) 

 

(b)  State the maximum height of the passenger above the ground. 

(1) 

 

The passenger reaches the maximum height, for the second time, T seconds after the start of 

the ride. 

 

(c)  Find the value of T. 

(2) 

___________________________________________________________________________ 

 

11.  (a)  Use binomial expansions to show that 
x

x





1

41
  1 + 

2

5
x – 

8

5
x

2
. 

(6) 

 

A student substitutes x = 
2

1
 into both sides of the approximation shown in part (a) in an 

attempt to find an approximation to 6. 

 

(b)  Give a reason why the student should not use x = 
2

1
. 

2 (1) 

 

(c)  Substitute x = 
11

1
 into 

x

x





1

41
 = 1 + 

2

5
x – 

8

5
x

2
 

 

 to obtain an approximation to 6 . Give your answer as a fraction in its simplest form. 

(3) 

___________________________________________________________________________ 

 



 8 

12.  The value, £V, of a vintage car t years after it was first valued on 1st January 2001, is 

modelled by the equation 

 

V = Ap
t
,   where A and p are constants. 

 

Given that the value of the car was £32 000 on 1st January 2005 and £50 000 on 1st January 

2012, 

 

(a)  (i)  find p to 4 decimal places, 

 

 (ii) show that A is approximately 24 800. 

(4) 

 

(b)  With reference to the model, interpret 

 

 (i)  the value of the constant A, 

 

 (ii) the value of the constant p. 

(2) 

 

Using the model, 

 

(c)  find the year during which the value of the car first exceeds £100 000. 

(4) 

___________________________________________________________________________ 

 

13.  Show that   xxx d22

2

0





  =  

15

32
(2 + 2).   

(7) 

___________________________________________________________________________ 

 

14.  A curve C has parametric equations 

 

x = 3 + 2 sin t,     y = 4 + 2 cos 2t,    0  t < 2π. 

 

(a)  Show that all points on C satisfy y = 6 − (x − 3)
2
. 

(2) 

 

(b)  (i)  Sketch the curve C. 

 

 (ii) Explain briefly why C does not include all points of y = 6 − (x − 3)
2
, x  ℝ. 

(3) 

 

The line with equation x + y = k, where k is a constant, intersects C at two distinct points. 

 

(c)  State the range of values of k, writing your answer in set notation. 

(5) 

___________________________________________________________________________ 

TOTAL FOR PAPER IS 100 MARKS 


